
5.6.1 Gagliardo-Nirenberg-Sobolev inequality

Toolbox

(i) (Hölder’s inequality) Assume 1 ≤ p, q ≤ ∞, 1

p
+

1

q
= 1. Then if u ∈ Lp(U), v ∈ Lq(U), we have

∫
U

|uv| dx ≤ ‖u‖Lp(U) ‖v‖Lq(U) (1)

Proof: Use Young’s inequality.

(ii) If U is bounded, f ∈ Lp′(U) for 1 ≤ r ≤ p′, then there exists C = C(U), such that

‖f‖Lr(U) ≤ C ‖f‖Lp′ (U) (2)

Proof: In Hölder’s inequality, choose u = |f |r, v = 1, and p =
p′

r

(iii) (General Hölder’s inequality) Let 1 ≤ p1, · · · pm ≤ ∞ with
m∑
k=1

1

pk
= 1, and assume uk ∈ Lpk(U) for

k = 1, · · · ,m Then ∫
U

|u1 · · ·um| dx ≤
m∑
k=1

‖uk‖Lpk (U) (3)

Proof: By induction.
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Theorem 1 (Gagliardo-Nirenberg-Sobolev inequality) Assume 1 ≤ p < n. There exists a constant C, de-
pending only on p and n, such that

‖u‖Lp∗(Rn) ≤ C ‖Du‖Lp(Rn) (4)

for all u ∈ C1
c (Rn), where p∗ :=

np

n− p
is called the Sobolev conjugate of p.

Motivation: Why do we define the Sobolev conjugate to be p∗ :=
np

n− p
?

Assume ∀u ∈ C1
c (Rn), u 6≡ 0, we have the following inequality for some fixed but unkonwn q:

‖u‖Lq(Rn) ≤ C ‖Du‖Lp(Rn) (5)

where C = C(n, p) For λ > 0, we define the rescaled function:

uλ(x) := u(λx),

which is still a C1
c (Rn) function. Therefore by applying (5) to uλ(x) we have

‖uλ‖Lq(Rn) ≤ C ‖Duλ‖Lp(Rn) (6)

Now, by change of variables we have
‖uλ‖Lq(Rn) = λ−

n
q ‖u‖Lq(Rn)

‖Duλ‖Lp(Rn) = λ1−
n
p ‖u‖Lp(Rn)

(7)

Plug (7) in (6) we have
‖u‖Lq(Rn) ≤ Cλ

1−np+
n
q ‖Du‖Lp(Rn)

If 1− n
p + n

q 6= 0, we can let 
λ→ 0, 1− n

p
+
n

q
> 0

λ→∞, 1− n

p
+
n

q
< 0

,

which leads to the contradiction that ‖u‖Lq(Rn) = 0. Thus, to have an inequality of the the same form as (5), we
must have

1− n

p
+
n

q
= 0,

that is,
1

q
=

1

p
− 1

n
, or q =

np

n− p
(8)
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Proof to Gagliardo-Nirenberg-Sobolev inequality:

Step 1. Assume p = 1, then p∗ = n
n−1

Since u has compact support in Rn, for each i = 1, 2, · · · , n and x ∈ Rn. we have

u(x) =

∫ xi

−∞
uxi(x1, · · · , xi−1, yi, xi+1, · · · , xn)dyi;

and so

|u(x)| ≤
∫ xi

−∞
|uxi(x1, · · · , xi−1, yi, xi+1, · · · , xn)| dyi

≤
∫ xi

−∞
|Du(x1, · · · , xi−1, yi, xi+1, · · · , xn)| dyi

≤
∫ ∞
−∞
|Du(x1, · · · , xi−1, yi, xi+1, · · · , xn)| dyi (i = 1, 2, · · · , n)

Consequently,

|u(x)|
n
n−1 ≤

n∏
i=1

(∫ ∞
−∞
|Du(x1, · · · , xi−1, yi, xi+1, · · · , xn)| dyi

) 1
n−1

(9)

Integrate this inequality with respect to x1:∫ ∞
−∞
|u|

n
n−1 dx1 ≤

∫ ∞
−∞

n∏
i=1

(∫ ∞
−∞
|Du| dyi

) 1
n−1

dx1

=

(∫ ∞
−∞
|Du| dy1

) 1
n−1

∫ ∞
−∞

n∏
i=2

(∫ ∞
−∞
|Du| dyi

) 1
n−1

dx1

≤
(∫ ∞
−∞
|Du| dy1

) 1
n−1

(
n∏
i=2

∫ ∞
−∞

∫ ∞
−∞
|Du| dx1dyi

) 1
n−1

(10)

the last inequality resulting from the general Hölder’s inequality (3).

Now integrate (10) with respect to x2:∫ ∞
−∞

∫ ∞
−∞
|u|

n
n−1 dx1dx2 ≤

(∫ ∞
−∞

∫ ∞
−∞
|Du| dx1dy2

) 1
n−1

∫ ∞
−∞

n∏
i=1
i 6=2

I
1

n−1

i dx2

for

I1 :=

∫ ∞
−∞
|Du| dy1, Ii :=

∫ ∞
−∞

∫ ∞
−∞
|Du| dx1dyi (i = 3, · · · , n)

Applying the general Hölder’s inequality again, we find∫ ∞
−∞

∫ ∞
−∞
|u|

n
n−1 dx1dx2 ≤

(∫ ∞
−∞

∫ ∞
−∞
|Du| dx1dy2

) 1
n−1

(∫ ∞
−∞

∫ ∞
−∞
|Du| dy1dx2

) 1
n−1

n∏
i=3

(∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
|Du| dx1dx2dyi

) 1
n−1

3



We continue by integrating with respect to x3, · · ·xn, eventually to find∫
Rn
|u|

n
n−1 dx ≤

n∏
i=1

(∫ ∞
−∞
· · ·
∫ ∞
−∞

∫ ∞
−∞
|Du| dx1 · · · dyi · · · dxn

) 1
n−1

=

(∫
Rn
|Du|

n
n−1 dx

) n
n−1

.

(11)

This is estimate (4) for p = 1

Step 2. Consider now the case that 1 < p < n. We apply estimate (11) to v := |u|γ , where γ > 1 is to be selected.
Then (∫

Rn
|u|

γn
n−1 dx

)n−1
n

≤
∫
Rn
|D |u|γ | dx = γ

∫
Rn
|u|γ−1 |Du| dx

≤ γ
(∫

Rn
|u|(γ−1)

p
p−1 dx

) p−1
p
(∫

Rn
|Du|p dx

) 1
p

(12)

If we choose γ so that γn
n−1 = (γ − 1) p

p−1 , that is, we set

γ :=
p(n− 1)

n− p
> 1,

And it turns out
γn

n− 1
= (γ − 1)

p

p− 1
=

np

n− 1
= p∗

So estimate (12) becomes

‖u‖Lp∗(Rn) ≤
p(n− 1)

n− p
‖Du‖Lp(Rn) ,

and constant in (4) is C = p(n−1)
n−p

Theorem 2 (Estimate for W 1,p, 1 ≤ p < n). Let U be a bounded, open subset of Rn, and suppose ∂U is C1.
Assume 1 ≤ p < n, and u ∈W 1,p(U). Then u ∈ Lp∗(U), with the estimate

‖u‖Lp∗(U) ≤ C ‖u‖W 1,p(U) (13)

the constant C depending only on p, n and U .

Proof. Since ∂U is C1 and u ∈ W 1,p(U), from theorem 1 of section 5.4, there exists an extension Eu = ū ∈
W 1,p(Rn), such that {

ū = u in U, ū has compact support in Rn, and

‖ū‖W 1,p(Rn) ≤ Ce ‖u‖W 1,p(U)

(14)

Because ū has compact support, from theorem 1 of section 5.3, there exist functions um ∈ C∞c (Rn)(m = 1, 2, · · · )
such that

um → ū in W 1,p(Rn) (15)

And now according to Theorem 1 we just proved, ‖um − ul‖Lp∗(Rn) ≤ C ‖Dum −Dul‖Lp(Rn) for all m, l ≥ 1. Thus

um → ū in Lp∗(Rn) (16)

as well. Since Theorem 1 in this section also implies ‖um‖Lp∗(Rn) ≤ C ‖Dum‖Lp(Rn), (15) and (16) yield the bound

‖ū‖Lp∗(Rn) ≤ C ‖Dū‖Lp(Rn)
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and

‖u‖Lp∗(U) = ‖ū‖Lp∗(U) ≤ ‖ū‖Lp∗(Rn) ≤ C1 ‖Dū‖Lp(Rn) ≤ ‖ū‖W 1,p(Rn) ≤ C1Ce ‖u‖W 1,p(U) = C ‖u‖W 1,p(U)

Remark: If ∂U is Lipschitz but not C1, then the theorem is not true. (See pp.318-319, A First Course in Sobolev
Spaces by Giovanni Leoni)

Corollary (Sobolev embedding for W k,p). If u ∈ W k,p(U) for some bounded, open subset of Rn, and 1 ≤ p < n
k ,

then
‖u‖

L
np
n−kp (U)

≤ C ‖u‖Wk,p(U) (17)

Proof: I will illustrate the idea using k = 2. For complete proof please use induction. Since u ∈ W 2,p(U),
u,Du ∈W 1,p(U) ⊂ Lp(U). And we have the estimates (13) for both u and Du, i.e.

‖u‖
L

np
n−p (U)

≤ C1 ‖u‖W 1,p(U)

‖Du‖
L

np
n−p (U)

≤ C2 ‖u‖W 1,p(U)

Thus by definition of Sobolev spaces, u ∈W 1, npn−p (U). Now if we use (13) again for u we will have the estimate

‖u‖
L

np
n−2p (U)

≤ C ‖u‖W 2,p(U)

Remark: This implies that W k,p(U) ⊂ L
np
n−kp (U).

Theorem 3 (Estimates for W 1,p
0 , 1 ≤ p < n). Assume U is a bounded open subset of Rn. Suppose u ∈ W 1,p

0 (U)
for some 1 ≤ p < n. Then we have the estimate

‖u‖Lq(U) ≤ C ‖Du‖Lp(U) (18)

for all q ∈ [1, p∗], the constant C = C(p, q, n, U).

Proof Since u ∈ W 1,p
0 (U), there exists functions um ∈ C∞c (U) (m = 1, 2, · · · ) converging to u in W 1,p(U). We

extend each function um to be 0 on Rn− Ū and using the arguments similar to the proof of Theorem 2 we will have

‖u‖Lp∗(U) ≤ C ‖u‖W 1,p(U)

As |U | <∞, by (2) we furthermore have

‖u‖Lq(U) ≤ C ‖Du‖Lp(U) ∀q ∈ [1, p∗]

Corollary (Classical Poincaré inequality) Let U be a bounded, open subset of Rn. For all 1 ≤ p ≤ ∞, if
u ∈W 1,p

0 (U), then we have the estimate

‖u‖Lp(U) ≤ C ‖Du‖Lp(U) (19)

Proof: We will prove this for the cases 1 ≤ p < n, n ≤ p <∞ and p =∞
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(i) For 1 ≤ p < n, since p < p∗, (19) is just a special case of (18)

(ii) For n ≤ p <∞, we can choose 1 ≤ q < n such that q < n ≤ p < q∗ using the fact that q∗ → ∞ as q → n.

Since W 1,p
0 (U) ⊂W 1,q

0 (U), applying (18) to W 1,q
0 (U) and (2) to ‖Du‖Lq(U) we have the estimate

‖u‖Lp(U) ≤ C
′ ‖Du‖Lq(U) ≤ C ‖Du‖Lp(U)

(iii) For p =∞, using the fundamental theorem of calculus, we have

|u(x1, x2, · · · , xn)| =
∣∣∣∣∫ x1

y1

∂x1
f(t, x2, · · · , xn)dt

∣∣∣∣
≤
∫ x1

y1

|Du(t, x2, · · · , xn)| dt

≤ diam(U) ‖Du‖L∞(U)

(20)

where y1 < x1 and y1 is small enough such that (y1, y2, · · · , yn) is outside of Ū for all yi ∈ R (i = 2, 3, · · · , n).
Now we take the supremum of the left hand side of (20) we have

‖u‖L∞(U) ≤ diam(U) ‖Du‖L∞(U)

The borderline case p = n. We next assume that

p = n

Because of the estimate (13)and the fact that p→ n, p∗ = np
n−p to+∞, we might expect that u ∈ L∞(U) provided

u ∈W 1,n(U). This is however false if n > 1.

Example 1: Let n > 1, and U = Bopen(0, 1), u = log log(1 + 1
|x| ). Then u ∈W 1,n(U) but u 6∈ L∞(U).

Proof: Use spherical coordinates and some tricks in Calculus I.
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