5.6.1 Gagliardo-Nirenberg-Sobolev inequality

Toolbox

(i) (Hölder's inequality) Assume $1 \le p, q \le \infty, \frac{1}{p} + \frac{1}{q} = 1$. Then if $u \in L^p(U), v \in L^q(U)$, we have

$$\int_{U} |uv| \, dx \le \|u\|_{L^{p}(U)} \, \|v\|_{L^{q}(U)} \tag{1}$$

Proof: Use Young's inequality.

(ii) If U is bounded, $f \in L^{p'}(U)$ for $1 \le r \le p'$, then there exists C = C(U), such that

$$\|f\|_{L^{r}(U)} \le C \,\|f\|_{L^{p'}(U)} \tag{2}$$

Proof: In Hölder's inequality, choose $u = |f|^r$, v = 1, and $p = \frac{p'}{r}$

(iii) (General Hölder's inequality) Let $1 \le p_1, \cdots p_m \le \infty$ with $\sum_{k=1}^m \frac{1}{p_k} = 1$, and assume $u_k \in L^{p_k}(U)$ for $k = 1, \cdots, m$ Then

$$\int_{U} |u_1 \cdots u_m| \, dx \le \sum_{k=1}^m ||u_k||_{L^{p_k}(U)} \tag{3}$$

Proof: By induction.

Theorem 1 (Gagliardo-Nirenberg-Sobolev inequality) Assume $1 \le p < n$. There exists a constant C, depending only on p and n, such that

$$\|u\|_{L^{p*}(\mathbb{R}^n)} \le C \|Du\|_{L^p(\mathbb{R}^n)} \tag{4}$$

for all $u \in C_c^1(\mathbb{R}^n)$, where $p* := \frac{np}{n-p}$ is called the **Sobolev conjugate** of p.

Motivation: Why do we define the **Sobolev conjugate** to be $p* := \frac{np}{n-p}$? Assume $\forall u \in C_c^1(\mathbb{R}^n), u \neq 0$, we have the following inequality for some fixed but unknown q:

$$\|u\|_{L^q(\mathbb{R}^n)} \le C \|Du\|_{L^p(\mathbb{R}^n)} \tag{5}$$

where C = C(n, p) For $\lambda > 0$, we define the rescaled function:

$$u_{\lambda}(x) := u(\lambda x),$$

which is still a $C_c^1(\mathbb{R}^n)$ function. Therefore by applying (5) to $u_{\lambda}(x)$ we have

$$\|u_{\lambda}\|_{L^{q}(\mathbb{R}^{n})} \leq C \|Du_{\lambda}\|_{L^{p}(\mathbb{R}^{n})}$$

$$\tag{6}$$

Now, by change of variables we have

$$\begin{aligned} \|u_{\lambda}\|_{L^{q}(\mathbb{R}^{n})} &= \lambda^{-\frac{n}{q}} \|u\|_{L^{q}(\mathbb{R}^{n})} \\ \|Du_{\lambda}\|_{L^{p}(\mathbb{R}^{n})} &= \lambda^{1-\frac{n}{p}} \|u\|_{L^{p}(\mathbb{R}^{n})} \end{aligned}$$
(7)

Plug (7) in (6) we have

 $\left\|u\right\|_{L^{q}(\mathbb{R}^{n})} \leq C\lambda^{1-\frac{n}{p}+\frac{n}{q}} \left\|Du\right\|_{L^{p}(\mathbb{R}^{n})}$

If $1 - \frac{n}{p} + \frac{n}{q} \neq 0$, we can let

$$\begin{cases} \lambda \to 0, \quad 1 - \frac{n}{p} + \frac{n}{q} > 0\\ \lambda \to \infty, \quad 1 - \frac{n}{p} + \frac{n}{q} < 0 \end{cases},$$

which leads to the contradiction that $||u||_{L^q(\mathbb{R}^n)} = 0$. Thus, to have an inequality of the same form as (5), we must have n = n

$$1 - \frac{n}{p} + \frac{n}{q} = 0,$$

$$\frac{1}{q} = \frac{1}{p} - \frac{1}{n}, \quad \text{or} \quad q = \frac{np}{n-p}$$
(8)

that is,

Proof to Gagliardo-Nirenberg-Sobolev inequality:

Step 1. Assume p = 1, then $p * = \frac{n}{n-1}$

Since u has compact support in \mathbb{R}^n , for each $i = 1, 2, \dots, n$ and $x \in \mathbb{R}^n$, we have

$$u(x) = \int_{-\infty}^{x_i} u_{x_i}(x_1, \cdots, x_{i-1}, y_i, x_{i+1}, \cdots, x_n) dy_i;$$

and so

$$\begin{aligned} |u(x)| &\leq \int_{-\infty}^{x_i} |u_{x_i}(x_1, \cdots, x_{i-1}, y_i, x_{i+1}, \cdots, x_n)| \, dy_i \\ &\leq \int_{-\infty}^{x_i} |Du(x_1, \cdots, x_{i-1}, y_i, x_{i+1}, \cdots, x_n)| \, dy_i \\ &\leq \int_{-\infty}^{\infty} |Du(x_1, \cdots, x_{i-1}, y_i, x_{i+1}, \cdots, x_n)| \, dy_i \quad (i = 1, 2, \cdots, n) \end{aligned}$$

Consequently,

$$|u(x)|^{\frac{n}{n-1}} \le \prod_{i=1}^{n} \left(\int_{-\infty}^{\infty} |Du(x_1, \cdots, x_{i-1}, y_i, x_{i+1}, \cdots, x_n)| \, dy_i \right)^{\frac{1}{n-1}} \tag{9}$$

Integrate this inequality with respect to x_1 :

$$\int_{-\infty}^{\infty} |u|^{\frac{n}{n-1}} dx_1 \leq \int_{-\infty}^{\infty} \prod_{i=1}^n \left(\int_{-\infty}^{\infty} |Du| dy_i \right)^{\frac{1}{n-1}} dx_1$$

$$= \left(\int_{-\infty}^{\infty} |Du| dy_1 \right)^{\frac{1}{n-1}} \int_{-\infty}^{\infty} \prod_{i=2}^n \left(\int_{-\infty}^{\infty} |Du| dy_i \right)^{\frac{1}{n-1}} dx_1 \qquad (10)$$

$$\leq \left(\int_{-\infty}^{\infty} |Du| dy_1 \right)^{\frac{1}{n-1}} \left(\prod_{i=2}^n \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |Du| dx_1 dy_i \right)^{\frac{1}{n-1}}$$

the last inequality resulting from the general Hölder's inequality (3). Now integrate (10) with respect to x_2 :

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |u|^{\frac{n}{n-1}} dx_1 dx_2 \le \left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |Du| dx_1 dy_2 \right)^{\frac{1}{n-1}} \int_{-\infty}^{\infty} \prod_{\substack{i=1\\i\neq 2}}^{n} I_i^{\frac{1}{n-1}} dx_2$$

for

$$I_1 := \int_{-\infty}^{\infty} |Du| \, dy_1, \quad I_i := \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |Du| \, dx_1 dy_i \quad (i = 3, \cdots, n)$$

Applying the general Hölder's inequality again, we find

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |u|^{\frac{n}{n-1}} dx_1 dx_2 \le \left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |Du| dx_1 dy_2 \right)^{\frac{1}{n-1}} \left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |Du| dy_1 dx_2 \right)^{\frac{1}{n-1}} \prod_{i=3}^{n} \left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |Du| dx_1 dx_2 dy_i \right)^{\frac{1}{n-1}}$$

We continue by integrating with respect to x_3, \dots, x_n , eventually to find

$$\int_{\mathbb{R}^n} |u|^{\frac{n}{n-1}} dx \leq \prod_{i=1}^n \left(\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |Du| dx_1 \cdots dy_i \cdots dx_n \right)^{\frac{1}{n-1}}$$

$$= \left(\int_{\mathbb{R}^n} |Du|^{\frac{n}{n-1}} dx \right)^{\frac{n}{n-1}}.$$
(11)

This is estimate (4) for p = 1

Step 2. Consider now the case that $1 . We apply estimate (11) to <math>v := |u|^{\gamma}$, where $\gamma > 1$ is to be selected. Then

$$\left(\int_{\mathbb{R}^{n}} |u|^{\frac{\gamma n}{n-1}} dx\right)^{\frac{n-1}{n}} \leq \int_{\mathbb{R}^{n}} |D| |u|^{\gamma} |dx = \gamma \int_{\mathbb{R}^{n}} |u|^{\gamma-1} |Du| dx$$

$$\leq \gamma \left(\int_{\mathbb{R}^{n}} |u|^{(\gamma-1)\frac{p}{p-1}} dx\right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^{n}} |Du|^{p} dx\right)^{\frac{1}{p}}$$
(12)

If we choose γ so that $\frac{\gamma n}{n-1} = (\gamma - 1) \frac{p}{p-1}$, that is, we set

$$\gamma := \frac{p(n-1)}{n-p} > 1,$$

And it turns out

$$\frac{\gamma n}{n-1} = (\gamma - 1)\frac{p}{p-1} = \frac{np}{n-1} = p*$$

So estimate (12) becomes

$$\|u\|_{L^{p^*}(\mathbb{R}^n)} \le \frac{p(n-1)}{n-p} \|Du\|_{L^p(\mathbb{R}^n)},$$

and constant in (4) is $C = \frac{p(n-1)}{n-p}$

Theorem 2 (Estimate for $W^{1,p}$, $1 \le p < n$). Let U be a bounded, open subset of \mathbb{R}^n , and suppose ∂U is C^1 . Assume $1 \le p < n$, and $u \in W^{1,p}(U)$. Then $u \in L^{p*}(U)$, with the estimate

$$\|u\|_{L^{p*}(U)} \le C \,\|u\|_{W^{1,p}(U)} \tag{13}$$

the constant C depending only on p, n and U.

Proof. Since ∂U is C^1 and $u \in W^{1,p}(U)$, from theorem 1 of section 5.4, there exists an extension $Eu = \bar{u} \in W^{1,p}(\mathbb{R}^n)$, such that

$$\begin{cases} \bar{u} = u \text{ in } U, \bar{u} \text{ has compact support in } \mathbb{R}^n, \text{ and} \\ \|\bar{u}\|_{W^{1,p}(\mathbb{R}^n)} \le C_e \|u\|_{W^{1,p}(U)} \end{cases}$$
(14)

Because \bar{u} has compact support, from theorem 1 of section 5.3, there exist functions $u_m \in C_c^{\infty}(\mathbb{R}^n)$ $(m = 1, 2, \cdots)$ such that

$$u_m \to \bar{u} \quad \text{in } W^{1,p}(\mathbb{R}^n)$$

$$\tag{15}$$

And now according to Theorem 1 we just proved, $||u_m - u_l||_{L^{p*}(\mathbb{R}^n)} \leq C ||Du_m - Du_l||_{L^p(\mathbb{R}^n)}$ for all $m, l \geq 1$. Thus

$$u_m \to \bar{u} \quad \text{in } L^{p*}(\mathbb{R}^n)$$
 (16)

as well. Since Theorem 1 in this section also implies $||u_m||_{L^{p*}(\mathbb{R}^n)} \leq C ||Du_m||_{L^p(\mathbb{R}^n)}$, (15) and (16) yield the bound

$$\|\bar{u}\|_{L^{p*}(\mathbb{R}^n)} \le C \|D\bar{u}\|_{L^p(\mathbb{R}^n)}$$

and

$$\|u\|_{L^{p*}(U)} = \|\bar{u}\|_{L^{p*}(U)} \le \|\bar{u}\|_{L^{p*}(\mathbb{R}^n)} \le C_1 \|D\bar{u}\|_{L^p(\mathbb{R}^n)} \le \|\bar{u}\|_{W^{1,p}(\mathbb{R}^n)} \le C_1 C_e \|u\|_{W^{1,p}(U)} = C \|u\|_{W^{1,p}(U)}$$

Remark: If ∂U is Lipschitz but not C^1 , then the theorem is not true. (See pp.318-319, A First Course in Sobolev Spaces by Giovanni Leoni)

Corollary (Sobolev embedding for $W^{k,p}$). If $u \in W^{k,p}(U)$ for some bounded, open subset of \mathbb{R}^n , and $1 \le p < \frac{n}{k}$, then

$$\|u\|_{L^{\frac{np}{n-kp}}(U)} \le C \|u\|_{W^{k,p}(U)} \tag{17}$$

Proof: I will illustrate the idea using k = 2. For complete proof please use induction. Since $u \in W^{2,p}(U)$, $u, Du \in W^{1,p}(U) \subset L^p(U)$. And we have the estimates (13) for both u and Du, i.e.

$$\begin{aligned} \|u\|_{L^{\frac{np}{n-p}}(U)} &\leq C_1 \, \|u\|_{W^{1,p}(U)} \\ \|Du\|_{L^{\frac{np}{n-p}}(U)} &\leq C_2 \, \|u\|_{W^{1,p}(U)} \end{aligned}$$

Thus by definition of Sobolev spaces, $u \in W^{1,\frac{np}{n-p}}(U)$. Now if we use (13) again for u we will have the estimate

$$\|u\|_{L^{\frac{np}{n-2p}}(U)} \le C \, \|u\|_{W^{2,p}(U)}$$

Remark: This implies that $W^{k,p}(U) \subset L^{\frac{np}{n-kp}}(U)$.

Theorem 3 (Estimates for $W_0^{1,p}$, $1 \le p < n$). Assume U is a bounded open subset of \mathbb{R}^n . Suppose u	$\in W_0^{1,p}(U)$
for some $1 \le p < n$. Then we have the estimate	

$$\|u\|_{L^{q}(U)} \le C \|Du\|_{L^{p}(U)} \tag{18}$$

for all $q \in [1, p*]$, the constant C = C(p, q, n, U).

Proof Since $u \in W_0^{1,p}(U)$, there exists functions $u_m \in C_c^{\infty}(U)$ $(m = 1, 2, \cdots)$ converging to u in $W^{1,p}(U)$. We extend each function u_m to be 0 on $\mathbb{R}^n - \overline{U}$ and using the arguments similar to the proof of Theorem 2 we will have

$$||u||_{L^{p*}(U)} \le C ||u||_{W^{1,p}(U)}$$

As $|U| < \infty$, by (2) we furthermore have

$$\|u\|_{L^{q}(U)} \le C \|Du\|_{L^{p}(U)} \quad \forall q \in [1, p*]$$

Corollary (Classical Poincaré inequality) Let U be a bounded, open subset of \mathbb{R}^n . For all $1 \leq p \leq \infty$, if $u \in W_0^{1,p}(U)$, then we have the estimate

$$\|u\|_{L^{p}(U)} \le C \|Du\|_{L^{p}(U)}$$
(19)

Proof: We will prove this for the cases $1 \le p < n$, $n \le p < \infty$ and $p = \infty$

- (i) For $1 \le p < n$, since $p < p^*$, (19) is just a special case of (18)
- (ii) $\frac{\text{For } n \leq p < \infty}{\text{Since } W_0^{1,p}(U) \subset W_0^{1,q}(U), \text{ applying (18) to } W_0^{1,q}(U) \text{ and (2) to } \|Du\|_{L^q(U)} \text{ we have the estimate}}$

$$||u||_{L^{p}(U)} \leq C' ||Du||_{L^{q}(U)} \leq C ||Du||_{L^{p}(U)}$$

(iii) For $p = \infty$, using the fundamental theorem of calculus, we have

$$|u(x_1, x_2, \cdots, x_n)| = \left| \int_{y_1}^{x_1} \partial_{x_1} f(t, x_2, \cdots, x_n) dt \right|$$

$$\leq \int_{y_1}^{x_1} |Du(t, x_2, \cdots, x_n)| dt$$

$$\leq \operatorname{diam}(U) \|Du\|_{L^{\infty}(U)}$$
(20)

where $y_1 < x_1$ and y_1 is small enough such that (y_1, y_2, \dots, y_n) is outside of \overline{U} for all $y_i \in \mathbb{R}$ $(i = 2, 3, \dots, n)$. Now we take the supremum of the left hand side of (20) we have

$$\|u\|_{L^{\infty}(U)} \leq \operatorname{diam}(U) \|Du\|_{L^{\infty}(U)}$$

The borderline case $\mathbf{p} = \mathbf{n}$. We next assume that

p = n

Because of the estimate (13) and the fact that $p \to n, p* = \frac{np}{n-p}to + \infty$, we might expect that $u \in L^{\infty}(U)$ provided $u \in W^{1,n}(U)$. This is however false if n > 1.

Example 1: Let n > 1, and $U = B^{\text{open}}(0,1), u = \log \log(1 + \frac{1}{|x|})$. Then $u \in W^{1,n}(U)$ but $u \notin L^{\infty}(U)$.

Proof: Use spherical coordinates and some tricks in Calculus I.