### 5.6.1 Gagliardo-Nirenberg-Sobolev inequality

## Toolbox

(i) (Hölder's inequality) Assume $1 \leq p, q \leq \infty, \frac{1}{p}+\frac{1}{q}=1$. Then if $u \in L^{p}(U), v \in L^{q}(U)$, we have

$$
\begin{equation*}
\int_{U}|u v| d x \leq\|u\|_{L^{p}(U)}\|v\|_{L^{q}(U)} \tag{1}
\end{equation*}
$$

Proof: Use Young's inequality.
(ii) If $U$ is bounded, $f \in L^{p^{\prime}}(U)$ for $1 \leq r \leq p^{\prime}$, then there exists $C=C(U)$, such that

$$
\begin{equation*}
\|f\|_{L^{r}(U)} \leq C\|f\|_{L^{p^{\prime}}(U)} \tag{2}
\end{equation*}
$$

Proof: In Hölder's inequality, choose $u=|f|^{r}, v=1$, and $p=\frac{p^{\prime}}{r}$
(iii) (General Hölder's inequality) Let $1 \leq p_{1}, \cdots p_{m} \leq \infty$ with $\sum_{k=1}^{m} \frac{1}{p_{k}}=1$, and assume $u_{k} \in L^{p_{k}}(U)$ for $k=1, \cdots, m$ Then

$$
\begin{equation*}
\int_{U}\left|u_{1} \cdots u_{m}\right| d x \leq \sum_{k=1}^{m}\left\|u_{k}\right\|_{L^{p_{k}}(U)} \tag{3}
\end{equation*}
$$

Proof: By induction.

Theorem 1 (Gagliardo-Nirenberg-Sobolev inequality) Assume $1 \leq p<n$. There exists a constant $C$, depending only on $p$ and $n$, such that

$$
\begin{equation*}
\|u\|_{L^{p *}\left(\mathbb{R}^{n}\right)} \leq C\|D u\|_{L^{p}\left(\mathbb{R}^{n}\right)} \tag{4}
\end{equation*}
$$

for all $u \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$, where $p *:=\frac{n p}{n-p}$ is called the Sobolev conjugate of $p$.
Motivation: Why do we define the Sobolev conjugate to be $p *:=\frac{n p}{n-p}$ ?
Assume $\forall u \in C_{c}^{1}\left(\mathbb{R}^{n}\right), u \not \equiv 0$, we have the following inequality for some fixed but unkonwn $q$ :

$$
\begin{equation*}
\|u\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C\|D u\|_{L^{p}\left(\mathbb{R}^{n}\right)} \tag{5}
\end{equation*}
$$

where $C=C(n, p)$ For $\lambda>0$, we define the rescaled function:

$$
u_{\lambda}(x):=u(\lambda x)
$$

which is still a $C_{c}^{1}\left(\mathbb{R}^{n}\right)$ function. Therefore by applying (5) to $u_{\lambda}(x)$ we have

$$
\begin{equation*}
\left\|u_{\lambda}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C\left\|D u_{\lambda}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \tag{6}
\end{equation*}
$$

Now, by change of variables we have

$$
\begin{align*}
& \left\|u_{\lambda}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}=\lambda^{-\frac{n}{q}}\|u\|_{L^{q}\left(\mathbb{R}^{n}\right)}  \tag{7}\\
& \left\|D u_{\lambda}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}=\lambda^{1-\frac{n}{p}}\|u\|_{L^{p}\left(\mathbb{R}^{n}\right)}
\end{align*}
$$

Plug (7) in (6) we have

$$
\|u\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C \lambda^{1-\frac{n}{p}+\frac{n}{q}}\|D u\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

If $1-\frac{n}{p}+\frac{n}{q} \neq 0$, we can let

$$
\left\{\begin{array}{l}
\lambda \rightarrow 0, \\
1-\frac{n}{p}+\frac{n}{q}>0 \\
\lambda \rightarrow \infty, \\
1-\frac{n}{p}+\frac{n}{q}<0
\end{array}\right.
$$

which leads to the contradiction that $\|u\|_{L^{q}\left(\mathbb{R}^{n}\right)}=0$. Thus, to have an inequality of the the same form as (5), we must have

$$
1-\frac{n}{p}+\frac{n}{q}=0
$$

that is,

$$
\begin{equation*}
\frac{1}{q}=\frac{1}{p}-\frac{1}{n}, \quad \text { or } \quad q=\frac{n p}{n-p} \tag{8}
\end{equation*}
$$

## Proof to Gagliardo-Nirenberg-Sobolev inequality:

Step 1. Assume $p=1$, then $p *=\frac{n}{n-1}$
Since $u$ has compact support in $\mathbb{R}^{n}$, for each $i=1,2, \cdots, n$ and $x \in \mathbb{R}^{n}$. we have

$$
u(x)=\int_{-\infty}^{x_{i}} u_{x_{i}}\left(x_{1}, \cdots, x_{i-1}, y_{i}, x_{i+1}, \cdots, x_{n}\right) d y_{i}
$$

and so

$$
\begin{aligned}
|u(x)| & \leq \int_{-\infty}^{x_{i}}\left|u_{x_{i}}\left(x_{1}, \cdots, x_{i-1}, y_{i}, x_{i+1}, \cdots, x_{n}\right)\right| d y_{i} \\
& \leq \int_{-\infty}^{x_{i}}\left|D u\left(x_{1}, \cdots, x_{i-1}, y_{i}, x_{i+1}, \cdots, x_{n}\right)\right| d y_{i} \\
& \leq \int_{-\infty}^{\infty}\left|D u\left(x_{1}, \cdots, x_{i-1}, y_{i}, x_{i+1}, \cdots, x_{n}\right)\right| d y_{i} \quad(i=1,2, \cdots, n)
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
|u(x)|^{\frac{n}{n-1}} \leq \prod_{i=1}^{n}\left(\int_{-\infty}^{\infty}\left|D u\left(x_{1}, \cdots, x_{i-1}, y_{i}, x_{i+1}, \cdots, x_{n}\right)\right| d y_{i}\right)^{\frac{1}{n-1}} \tag{9}
\end{equation*}
$$

Integrate this inequality with respect to $x_{1}$ :

$$
\begin{align*}
\int_{-\infty}^{\infty}|u|^{\frac{n}{n-1}} d x_{1} & \leq \int_{-\infty}^{\infty} \prod_{i=1}^{n}\left(\int_{-\infty}^{\infty}|D u| d y_{i}\right)^{\frac{1}{n-1}} d x_{1} \\
& =\left(\int_{-\infty}^{\infty}|D u| d y_{1}\right)^{\frac{1}{n-1}} \int_{-\infty}^{\infty} \prod_{i=2}^{n}\left(\int_{-\infty}^{\infty}|D u| d y_{i}\right)^{\frac{1}{n-1}} d x_{1}  \tag{10}\\
& \leq\left(\int_{-\infty}^{\infty}|D u| d y_{1}\right)^{\frac{1}{n-1}}\left(\prod_{i=2}^{n} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|D u| d x_{1} d y_{i}\right)^{\frac{1}{n-1}}
\end{align*}
$$

the last inequality resulting from the general Hölder's inequality (3).
Now integrate (10) with respect to $x_{2}$ :

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|u|^{\frac{n}{n-1}} d x_{1} d x_{2} \leq\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|D u| d x_{1} d y_{2}\right)^{\frac{1}{n-1}} \int_{-\infty}^{\infty} \prod_{\substack{i=1 \\ i \neq 2}}^{n} I_{i}^{\frac{1}{n-1}} d x_{2}
$$

for

$$
I_{1}:=\int_{-\infty}^{\infty}|D u| d y_{1}, \quad I_{i}:=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|D u| d x_{1} d y_{i} \quad(i=3, \cdots, n)
$$

Applying the general Hölder's inequality again, we find

$$
\begin{array}{r}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|u|^{\frac{n}{n-1}} d x_{1} d x_{2} \leq\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|D u| d x_{1} d y_{2}\right)^{\frac{1}{n-1}}\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|D u| d y_{1} d x_{2}\right)^{\frac{1}{n-1}} \\
\prod_{i=3}^{n}\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|D u| d x_{1} d x_{2} d y_{i}\right)^{\frac{1}{n-1}}
\end{array}
$$

We continue by integrating with respect to $x_{3}, \cdots x_{n}$, eventually to find

$$
\begin{align*}
\int_{\mathbb{R}^{n}}|u|^{\frac{n}{n-1}} d x & \leq \prod_{i=1}^{n}\left(\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|D u| d x_{1} \cdots d y_{i} \cdots d x_{n}\right)^{\frac{1}{n-1}}  \tag{11}\\
& =\left(\int_{\mathbb{R}^{n}}|D u|^{\frac{n}{n-1}} d x\right)^{\frac{n}{n-1}}
\end{align*}
$$

This is estimate (4) for $p=1$
Step 2. Consider now the case that $1<p<n$. We apply estimate (11) to $v:=|u|^{\gamma}$, where $\gamma>1$ is to be selected. Then

$$
\begin{align*}
\left(\int_{\mathbb{R}^{n}}|u|^{\frac{\gamma n}{n-1}} d x\right)^{\frac{n-1}{n}} & \leq\left.\left.\int_{\mathbb{R}^{n}}|D| u\right|^{\gamma}\left|d x=\gamma \int_{\mathbb{R}^{n}}\right| u\right|^{\gamma-1}|D u| d x \\
& \leq \gamma\left(\int_{\mathbb{R}^{n}}|u|^{(\gamma-1) \frac{p}{p-1}} d x\right)^{\frac{p-1}{p}}\left(\int_{\mathbb{R}^{n}}|D u|^{p} d x\right)^{\frac{1}{p}} \tag{12}
\end{align*}
$$

If we choose $\gamma$ so that $\frac{\gamma n}{n-1}=(\gamma-1) \frac{p}{p-1}$, that is, we set

$$
\gamma:=\frac{p(n-1)}{n-p}>1
$$

And it turns out

$$
\frac{\gamma n}{n-1}=(\gamma-1) \frac{p}{p-1}=\frac{n p}{n-1}=p *
$$

So estimate (12) becomes

$$
\|u\|_{L^{p *}\left(\mathbb{R}^{n}\right)} \leq \frac{p(n-1)}{n-p}\|D u\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

and constant in (4) is $C=\frac{p(n-1)}{n-p}$

Theorem 2 (Estimate for $W^{1, p}, 1 \leq p<n$ ). Let $U$ be a bounded, open subset of $\mathbb{R}^{n}$, and suppose $\partial U$ is $C^{1}$. Assume $1 \leq p<n$, and $u \in W^{1, p}(U)$. Then $u \in L^{p *}(U)$, with the estimate

$$
\begin{equation*}
\|u\|_{L^{p *}(U)} \leq C\|u\|_{W^{1, p}(U)} \tag{13}
\end{equation*}
$$

the constant $C$ depending only on $p, n$ and $U$.
Proof. Since $\partial U$ is $C^{1}$ and $u \in W^{1, p}(U)$, from theorem 1 of section 5.4, there exists an extension $E u=\bar{u} \in$ $W^{1, p}\left(\mathbb{R}^{n}\right)$, such that

$$
\left\{\begin{array}{l}
\bar{u}=u \text { in } U, \bar{u} \text { has compact support in } \mathbb{R}^{n}, \text { and }  \tag{14}\\
\|\bar{u}\|_{W^{1, p}\left(\mathbb{R}^{n}\right)} \leq C_{e}\|u\|_{W^{1, p}(U)}
\end{array}\right.
$$

Because $\bar{u}$ has compact support, from theorem 1 of section 5.3 , there exist functions $u_{m} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)(m=1,2, \cdots)$ such that

$$
\begin{equation*}
u_{m} \rightarrow \bar{u} \quad \text { in } W^{1, p}\left(\mathbb{R}^{n}\right) \tag{15}
\end{equation*}
$$

And now according to Theorem 1 we just proved, $\left\|u_{m}-u_{l}\right\|_{L^{p *}\left(\mathbb{R}^{n}\right)} \leq C\left\|D u_{m}-D u_{l}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}$ for all $m, l \geq 1$. Thus

$$
\begin{equation*}
u_{m} \rightarrow \bar{u} \quad \text { in } L^{p *}\left(\mathbb{R}^{n}\right) \tag{16}
\end{equation*}
$$

as well. Since Theorem 1 in this section also implies $\left\|u_{m}\right\|_{L^{p *}\left(\mathbb{R}^{n}\right)} \leq C\left\|D u_{m}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)},(15)$ and (16) yield the bound

$$
\|\bar{u}\|_{L^{p *}\left(\mathbb{R}^{n}\right)} \leq C\|D \bar{u}\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

and

$$
\|u\|_{L^{p *}(U)}=\|\bar{u}\|_{L^{p *}(U)} \leq\|\bar{u}\|_{L^{p *}\left(\mathbb{R}^{n}\right)} \leq C_{1}\|D \bar{u}\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\|\bar{u}\|_{W^{1, p}\left(\mathbb{R}^{n}\right)} \leq C_{1} C_{e}\|u\|_{W^{1, p}(U)}=C\|u\|_{W^{1, p}(U)}
$$

Remark: If $\partial U$ is Lipschitz but not $C^{1}$, then the theorem is not true. (See pp.318-319, A First Course in Sobolev Spaces by Giovanni Leoni)

Corollary (Sobolev embedding for $W^{k, p}$ ). If $u \in W^{k, p}(U)$ for some bounded, open subset of $\mathbb{R}^{n}$, and $1 \leq p<\frac{n}{k}$, then

$$
\begin{equation*}
\|u\|_{L^{\frac{n p}{n-k p}(U)}} \leq C\|u\|_{W^{k, p}(U)} \tag{17}
\end{equation*}
$$

Proof: I will illustrate the idea using $k=2$. For complete proof please use induction. Since $u \in W^{2, p}(U)$, $u, D u \in W^{1, p}(U) \subset L^{p}(U)$. And we have the estimates (13) for both $u$ and $D u$, i.e.

$$
\begin{aligned}
& \|u\|_{L^{\frac{n p}{n-p}(U)}} \leq C_{1}\|u\|_{W^{1, p}(U)} \\
& \|D u\|_{L^{\frac{n p}{n-p}}(U)} \leq C_{2}\|u\|_{W^{1, p}(U)}
\end{aligned}
$$

Thus by definition of Sobolev spaces, $u \in W^{1, \frac{n p}{n-p}}(U)$. Now if we use (13) again for $u$ we will have the estimate

$$
\|u\|_{L^{\frac{n p}{n-2 p}(U)}} \leq C\|u\|_{W^{2, p}(U)}
$$

Remark: This implies that $W^{k, p}(U) \subset L^{\frac{n p}{n-k p}}(U)$.

Theorem 3 (Estimates for $\left.W_{0}^{1, p}, 1 \leq p<n\right)$. Assume $U$ is a bounded open subset of $\mathbb{R}^{n}$. Suppose $u \in W_{0}^{1, p}(U)$ for some $1 \leq p<n$. Then we have the estimate

$$
\begin{equation*}
\|u\|_{L^{q}(U)} \leq C\|D u\|_{L^{p}(U)} \tag{18}
\end{equation*}
$$

for all $q \in[1, p *]$, the constant $C=C(p, q, n, U)$.
Proof Since $u \in W_{0}^{1, p}(U)$, there exists functions $u_{m} \in C_{c}^{\infty}(U) \quad(m=1,2, \cdots)$ converging to $u$ in $W^{1, p}(U)$. We extend each function $u_{m}$ to be 0 on $\mathbb{R}^{n}-\bar{U}$ and using the arguments similar to the proof of Theorem 2 we will have

$$
\|u\|_{L^{p *}(U)} \leq C\|u\|_{W^{1, p}(U)}
$$

As $|U|<\infty$, by (2) we furthermore have

$$
\|u\|_{L^{q}(U)} \leq C\|D u\|_{L^{p}(U)} \quad \forall q \in[1, p *]
$$

Corollary (Classical Poincaré inequality) Let $U$ be a bounded, open subset of $\mathbb{R}^{n}$. For all $1 \leq p \leq \infty$, if $u \in W_{0}^{1, p}(U)$, then we have the estimate

$$
\begin{equation*}
\|u\|_{L^{p}(U)} \leq C\|D u\|_{L^{p}(U)} \tag{19}
\end{equation*}
$$

Proof: We will prove this for the cases $1 \leq p<n, n \leq p<\infty$ and $p=\infty$
(i) For $1 \leq p<n$, since $p<p *$, (19) is just a special case of (18)
(ii) For $n \leq p<\infty$, we can choose $1 \leq q<n$ such that $q<n \leq p<q *$ using the fact that $q * \rightarrow \infty$ as $q \rightarrow n$. $\overline{\text { Since } W_{0}^{1, p}(U)} \subset W_{0}^{1, q}(U)$, applying (18) to $W_{0}^{1, q}(U)$ and (2) to $\|D u\|_{L^{q}(U)}$ we have the estimate

$$
\|u\|_{L^{p}(U)} \leq C^{\prime}\|D u\|_{L^{q}(U)} \leq C\|D u\|_{L^{p}(U)}
$$

(iii) For $p=\infty$, using the fundamental theorem of calculus, we have

$$
\begin{align*}
\left|u\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right| & =\left|\int_{y_{1}}^{x_{1}} \partial_{x_{1}} f\left(t, x_{2}, \cdots, x_{n}\right) d t\right| \\
& \leq \int_{y_{1}}^{x_{1}}\left|D u\left(t, x_{2}, \cdots, x_{n}\right)\right| d t  \tag{20}\\
& \leq \operatorname{diam}(U)\|D u\|_{L^{\infty}(U)}
\end{align*}
$$

where $y_{1}<x_{1}$ and $y_{1}$ is small enough such that $\left(y_{1}, y_{2}, \cdots, y_{n}\right)$ is outside of $\bar{U}$ for all $y_{i} \in \mathbb{R}(i=2,3, \cdots, n)$. Now we take the supremum of the left hand side of (20) we have

$$
\|u\|_{L^{\infty}(U)} \leq \operatorname{diam}(U)\|D u\|_{L^{\infty}(U)}
$$

The borderline case $\mathbf{p}=\mathbf{n}$. We next assume that

$$
p=n
$$

Because of the estimate (13) and the fact that $p \rightarrow n, p *=\frac{n p}{n-p} t o+\infty$, we might expect that $u \in L^{\infty}(U)$ provided $u \in W^{1, n}(U)$. This is however false if $n>1$.

Example 1: Let $n>1$, and $U=B^{\text {open }}(0,1), u=\log \log \left(1+\frac{1}{|x|}\right)$. Then $u \in W^{1, n}(U)$ but $u \notin L^{\infty}(U)$.
Proof: Use spherical coordinates and some tricks in Calculus I.

